Effects of Plastic Pollution of Soil on the Growth and Survival of Bacteria and Fungi
The study examined the effect of plastic waste on soil bacteria and fungi. The test soil samples were collected from Lokoja international market waste dump site and the control soil sample was collected from non plastic contaminated garden in Salem University, Lokoja. The samples were analysed using...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Sciences and Environmental Management 2021-11, Vol.25 (7), p.1187-1190 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study examined the effect of plastic waste on soil bacteria and fungi. The test soil samples were collected from Lokoja international market waste dump site and the control soil sample was collected from non plastic contaminated garden in Salem University, Lokoja. The samples were analysed using Gas chromatography with mass spectrometer. The test soil sample soil sample had high quantity of plastic contaminant which were Methylene chloride 17.45mg/kg, hexane 10.05mg/kg, chloroform 1.56mg/kg, toluene 5.87mg/kg, tetrachloroethylene 1.48mg/kg as compared to the control garden soil sample, which had methylene chloride 0.54mg/kg, hexane 0.26mg/kg, chloroform 0.31mg/kg, toluene 5.87mg/kg and tetrachloroethylene 0.01mg/kg. The result showed the presence of plastic in the soil and it effect on bacteria and fungi. The totals of 11 bacteria were isolated from both soil samples using nutrient agar. The bacteria isolated are; Corynebacterium spp. (12%), Enterobacter spp. (8%), Acinetobacter spp. (6%), Escherichia coli (16%), Epidermis, Bacillus subtilis (15%), Serratia sp. (8%), Proteus spp. (4%), Micrococcus luteus (7%), Flavobacterium spp. (10%), Pseudomonas aeruginosa (15%). Micrococcus luteus, Flavobacterium spp. and Pseudomonas aeruginose were not isolated in plastic composted soil sample due to the presence of plasticizers. The total of 6 fungi were isolated, namely Penicilliun expansion (12%), Sacchromyces sp. (24%), Aspergillus niger (19%), Fusarium spp. (20%), Rhizopus stolonifer (10%) and Mucor piriformis (15%). This study reveals the effect of plastic waste, as it inhibits the growth of microorganism that is important for soil activities, thereby reducing the soil nutrients, fertility and productivity. |
---|---|
ISSN: | 1119-8362 2659-1502 2659-1502 2659-1499 |
DOI: | 10.4314/jasem.v25i7.13 |