Numerical metrics, curvature expansions and Calabi-Yau manifolds
A bstract We discuss the extent to which numerical techniques for computing approximations to Ricci-flat metrics can be used to investigate hierarchies of curvature scales on Calabi-Yau manifolds. Control of such hierarchies is integral to the validity of curvature expansions in string effective the...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2020-05, Vol.2020 (5), p.1-18, Article 44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We discuss the extent to which numerical techniques for computing approximations to Ricci-flat metrics can be used to investigate hierarchies of curvature scales on Calabi-Yau manifolds. Control of such hierarchies is integral to the validity of curvature expansions in string effective theories. Nevertheless, for seemingly generic points in moduli space it can be difficult to analytically determine if there might be a highly curved region localized somewhere on the Calabi-Yau manifold. We show that numerical techniques are rather efficient at deciding this issue. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP05(2020)044 |