A cyclic bis[2]catenane metallacage
Catenated cages represent chemistry’s challenging synthetic targets because a three-dimensional assembly is necessary for their formation. Herein, a cyclic bis[2]catenane is constructed through the coordination-driven self-assembly of the interlocked bis-metallacage, by the 90° Pt(II) heteroligation...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-06, Vol.11 (1), p.2727-2727, Article 2727 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Catenated cages represent chemistry’s challenging synthetic targets because a three-dimensional assembly is necessary for their formation. Herein, a cyclic bis[2]catenane is constructed through the coordination-driven self-assembly of the interlocked bis-metallacage, by the 90° Pt(II) heteroligation of the endo-functionalized double-bridged tweezer bearing pyridyl moieties and the tetra-carboxylated linker. NMR spectrometry, X-ray crystallography and mass spectrometry confirm the formation of a cyclic bis[2]catenane with “∞”-shaped topology via a 14-component self-assembly. Particularly, reversibly responsive transformation between the bis[2]catenane and the bis-metallacage can be realized by guest exchange, concentration effect and solvent effect. This work represents a novel example of a cyclic cage-based [2]catenane oligomer.
Catenated cages are challenging synthetic targets in chemistry. Here, the authors employ a multi-component coordination strategy using a Pt(II) heteroligation to construct a cyclic bis[2]catenane metallacage, which could be reversibly transformed between the catenated structure and the bis-metallacage. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-16556-3 |