Terahertz spoof plasmonic neural network for diffractive information recognition and processing

All-optical diffractive neural networks, as analog artificial intelligence accelerators, leverage parallelism and analog computation for complex data processing. However, their low space transmission efficiency or large spatial dimensions hinder miniaturization and broader application. Here, we prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-08, Vol.15 (1), p.6686-11, Article 6686
Hauptverfasser: Gao, Xinxin, Gu, Ze, Ma, Qian, Chen, Bao Jie, Shum, Kam-Man, Cui, Wen Yi, You, Jian Wei, Cui, Tie Jun, Chan, Chi Hou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All-optical diffractive neural networks, as analog artificial intelligence accelerators, leverage parallelism and analog computation for complex data processing. However, their low space transmission efficiency or large spatial dimensions hinder miniaturization and broader application. Here, we propose a terahertz spoof plasmonic neural network on a planar diffractive platform for direct multi-target recognition. Our approach employs a spoof surface plasmon polariton coupler array to construct a diffractive network layer, resulting in a compact, efficient, and easily integrable architecture. We designed three schemes: basis vector classification, multi-user recognition, and MNIST handwritten digit classification. Experimental results reveal that the terahertz spoof plasmonic neural network successfully classifies basis vectors, recognizes multi-user orientation information, and directly processes handwritten digits using a designed input framework comprising a metal grating array, transmitters, and receivers. This work broadens the application of terahertz plasmonic metamaterials, paving the way for terahertz on-chip integration, intelligent communication, and advanced computing systems. Gao et al. propose and demonstrate a terahertz spoof plasmonic neural network for directly processing and recognizing the diffractive information.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-51210-2