Insulin and Metformin Control Cell Proliferation by Regulating TDG-Mediated DNA Demethylation in Liver and Breast Cancer Cells

Type 2 diabetes mellitus (T2DM) is a frequent comorbidity of cancer. Hyperinsulinemia secondary to T2DM promotes cancer progression, whereas antidiabetic agents, such as metformin, have anticancer effects. However, the detailed mechanism for insulin and metformin-regulated cancer cell proliferation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy. Oncolytics 2020-09, Vol.18, p.282-294
Hauptverfasser: Yan, Jia-Bao, Lai, Chien-Cheng, Jhu, Jin-Wei, Gongol, Brendan, Marin, Traci L., Lin, Shih-Chieh, Chiu, Hsiang-Yi, Yen, Chia-Jui, Wang, Liang-Yi, Peng, I-Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Type 2 diabetes mellitus (T2DM) is a frequent comorbidity of cancer. Hyperinsulinemia secondary to T2DM promotes cancer progression, whereas antidiabetic agents, such as metformin, have anticancer effects. However, the detailed mechanism for insulin and metformin-regulated cancer cell proliferation remains unclear. This study identified a mechanism by which insulin upregulated the expression of c-Myc, sterol regulatory element-binding protein 1 (SREBP1), and acetyl-coenzyme A (CoA) carboxylase 1 (ACC1), which are important regulators of lipogenesis and cell proliferation. Thymine DNA glycosylase (TDG), a DNA demethylase, was transactivated by c-Myc upon insulin treatment, thereby decreasing 5-carboxylcytosine (5caC) abundance in the SREBP1 promoter. On the other hand, metformin-activated AMP-activated protein kinase (AMPK) increased DNA methyltransferase 3A (DNMT3A) activity to increase 5-methylcytosine (5mC) abundance in the TDG promoter. This resulted in decreased TDG expression and enhanced 5caC abundance in the SREBP1 promoter. These findings demonstrate that c-Myc activates, whereas AMPK inhibits, TDG-mediated DNA demethylation of the SREBP1 promoter in insulin-promoted and metformin-suppressed cancer progression, respectively. This study indicates that TDG is an epigenetic-based therapeutic target for cancers associated with T2DM. [Display omitted] Peng and colleagues demonstrate that c-Myc activates, whereas AMP-activated protein kinase (AMPK) inhibits, thymine DNA glycosylase (TDG)-mediated DNA demethylation of the sterol regulatory element-binding protein 1 (SREBP1) promoter in insulin-promoted and metformin-suppressed cancer progression, respectively. Therefore, targeting TDG represents an epigenetic-based therapeutic strategy for cancers associated with type 2 diabetes mellitus.
ISSN:2372-7705
2372-7705
DOI:10.1016/j.omto.2020.06.010