Tracking multiple conformations occurring on angstrom-and-millisecond scales in single amino-acid-transporter molecules

Most membrane protein molecules undergo conformational changes as they transition from one functional state to another one. An understanding of the mechanism underlying these changes requires the ability to resolve individual conformational states, whose changes often occur on millisecond and angstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eLife 2023-02, Vol.12
Hauptverfasser: Zhou, Yufeng, Lewis, John H, Lu, Zhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most membrane protein molecules undergo conformational changes as they transition from one functional state to another one. An understanding of the mechanism underlying these changes requires the ability to resolve individual conformational states, whose changes often occur on millisecond and angstrom scales. Tracking such changes and acquiring a sufficiently large amount of data remain challenging. Here, we use the amino-acid transporter AdiC as an example to demonstrate the application of a high-resolution fluorescence-polarization-microscopy method in tracking multistate conformational changes of a membrane protein. We have successfully resolved four conformations of AdiC by monitoring the emission-polarization changes of a fluorophore label and quantified their probabilities in the presence of a series of concentrations of its substrate arginine. The acquired data are sufficient for determining all equilibrium constants that fully establish the energetic relations among the four states. The values determined for arginine in four individual conformations are statistically comparable to the previously reported overall determined using isothermal titration calorimetry. This demonstrated strong resolving power of the present polarization-microscopy method will enable an acquisition of the quantitative information required for understanding the expected complex conformational mechanism underlying the transporter's function, as well as those of other membrane proteins.
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.82175