Edaravone Dexborneol Downregulates Neutrophil Extracellular Trap Expression and Ameliorates Blood-Brain Barrier Permeability in Acute Ischemic Stroke
Background. Our previous work has shown that inflammatory processes play a detrimental role in the pathophysiology of acute ischemic stroke (AIS). Neutrophil extracellular traps (NETs) have been recognized as a key contributor to the proinflammatory response in AIS and could aggravate blood-brain ba...
Gespeichert in:
Veröffentlicht in: | Mediators of inflammation 2022-08, Vol.2022, p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background. Our previous work has shown that inflammatory processes play a detrimental role in the pathophysiology of acute ischemic stroke (AIS). Neutrophil extracellular traps (NETs) have been recognized as a key contributor to the proinflammatory response in AIS and could aggravate blood-brain barrier (BBB) damage. Recently, experimental and clinical researches showed that Edaravone Dexborneol (Eda.B), which is comprised of two active ingredients, Edaravone and (+)-Borneol, was effective in treatment of AIS. However, it is not clear whether the effects of Eda.B against AIS are related to NETs and BBB permeability. Methods. Experiment 1 was to detect the effects of Eda.B in AIS patients. Serum samples of volunteers and AIS patients were collected before and 3 days after Edaravone Dexborneol treatment. Markers of NETs and occludin were detected by ELISA kit. Experiment 2 was to explore the effects of Eda.B on experimental stroke mice. Male C57BL/6 mice were subjected to distal middle cerebral artery occlusion (MCAO) and treated with vehicle, Eda.B, or DeoxyribonueleaseI (DNase I). After stroke, the neurobehavioral tests, infarct volume, and cerebral blood flow evaluation were determined. Leakage of Evans blue was to assess the integrity of BBB. Western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and immunofluorescence were used to examine the expression of NETs and tight junction- (TJ-) associated proteins. Results. Eda.B significantly improved neurological function and cerebral blood flow but reduced infarct volume after experimental stroke. Eda.B downregulated level of NETs in serum samples of AIS patients and tissue samples of MCAO mouse cortex. Eda.B and DNase I alleviated BBB permeability by upregulating TJ-associated proteins. Conclusion. NETs are related to the early stage of AIS. Eda.B exerted neuroprotective effects and ameliorated BBB permeability after AIS. |
---|---|
ISSN: | 0962-9351 1466-1861 |
DOI: | 10.1155/2022/3855698 |