Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms

This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-11, Vol.13 (1), p.18911-18911, Article 18911
Hauptverfasser: Pemberton, Hugh G., Wu, Jiaming, Kommers, Ivar, Müller, Domenique M. J., Hu, Yipeng, Goodkin, Olivia, Vos, Sjoerd B., Bisdas, Sotirios, Robe, Pierre A., Ardon, Hilko, Bello, Lorenzo, Rossi, Marco, Sciortino, Tommaso, Nibali, Marco Conti, Berger, Mitchel S., Hervey-Jumper, Shawn L., Bouwknegt, Wim, Van den Brink, Wimar A., Furtner, Julia, Han, Seunggu J., Idema, Albert J. S., Kiesel, Barbara, Widhalm, Georg, Kloet, Alfred, Wagemakers, Michiel, Zwinderman, Aeilko H., Krieg, Sandro M., Mandonnet, Emmanuel, Prados, Ferran, de Witt Hamer, Philip, Barkhof, Frederik, Eijgelaar, Roelant S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using manual segmentations from preoperative MRI of glioblastoma (GBM) and low-grade gliomas (LGG) from the BraTS 2021 dataset (1251 in total), in addition to 275 GBM and 205 LGG acquired clinically across 12 hospitals worldwide. Data was split into 80% training, 5% validation, and 15% internal test data. An additional external test-set of 158 GBM and 69 LGG was used to assess generalisability to other hospitals’ data. All models’ median Dice similarity coefficient (DSC) for both test sets were within, or higher than, previously reported human inter-rater agreement (range of 0.74–0.85). For both test sets, nn-Unet achieved the highest DSC (internal = 0.86, external = 0.93) and the lowest Hausdorff distances (10.07, 13.87 mm, respectively) for all tumor classes ( p  
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-44794-0