Modal Phase Modulators Based on Liquid Crystals with 3D-Printed Polymer Microstructures: Increasing Size and Complexity
We present extended capabilities in simple liquid crystal-based devices that are applicable to adaptive optics and other related fields requiring wavefront manipulation. The laser-written devices can provide complex phase profiles, but are extremely simple to operate, requiring only a single electro...
Gespeichert in:
Veröffentlicht in: | Photonics 2024-03, Vol.11 (3), p.266 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present extended capabilities in simple liquid crystal-based devices that are applicable to adaptive optics and other related fields requiring wavefront manipulation. The laser-written devices can provide complex phase profiles, but are extremely simple to operate, requiring only a single electrode pair tuned between 0 and 10 V RMS. Furthermore, the devices operate in the transmissive mode for easy integration into the optical path. We present here as examples three such devices: the first device reproduces the defocus Zernike polynomial; the second device reproduces a seventh-order Zernike polynomial, tertiary coma; and the last example is of a primary spherical aberration. All devices offer wavelength-scale wavefront manipulation up to more than 2π radians peak-to-peak phase at a wavelength of 660 nm. The coma correction device is significantly more complex, reproducing a mode two orders higher than previous demonstrations, while the spherical device is nearly a full order of magnitude larger, measuring 2 mm in diameter. |
---|---|
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics11030266 |