A Class of Graphs Approaching Vizing's Conjecture
For any graph G=(V,E), a subset S of V dominates G if all vertices are contained in the closed neighborhood of S, that is N[S]=V. The minimum cardinality over all such S is called the domination number, written γ(G). In 1963, V.G. Vizing conjectured that γ(G □ H) ≥ γ(G)γ(H) where □ stands for the Ca...
Gespeichert in:
Veröffentlicht in: | Theory and applications of graphs (Statesboro, Ga.) Ga.), 2016-04, Vol.3 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any graph G=(V,E), a subset S of V dominates G if all vertices are contained in the closed neighborhood of S, that is N[S]=V. The minimum cardinality over all such S is called the domination number, written γ(G). In 1963, V.G. Vizing conjectured that γ(G □ H) ≥ γ(G)γ(H) where □ stands for the Cartesian product of graphs. In this note, we define classes of graphs An, for n≥0, so that every graph belongs to some such class, and A0 corresponds to class A of Bartsalkin and German. We prove that for any graph G in class A1, γ(G□H)≥ [γ(G)-√(γ(G))]γ(H). |
---|---|
ISSN: | 2470-9859 2470-9859 |
DOI: | 10.20429/tag.2016.030104 |