Plastome characterization and its phylogenetic implications on Lithocarpus (Fagaceae)
The genus Lithocarpus is a species-rich dominant woody lineage in East Asian evergreen broad-leaved forests. Despite its ecological and economic significance, the plastome structure and evolutionary history of the genus remain poorly understood. In this study, we comprehensively analyzed the 34 plas...
Gespeichert in:
Veröffentlicht in: | BMC plant biology 2024-12, Vol.24 (1), p.1277-19, Article 1277 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The genus Lithocarpus is a species-rich dominant woody lineage in East Asian evergreen broad-leaved forests. Despite its ecological and economic significance, the plastome structure and evolutionary history of the genus remain poorly understood. In this study, we comprehensively analyzed the 34 plastomes representing 33 Lithocarpus species. Of which, 21 were newly assembled. The plastome-based phylogenomic tree was reconstructed to reveal the maternal evolutionary patterns of the genus.
The Lithocarpus plastomes exhibit a typical quadripartite structure, ranging in length from 161,010 to 161,476 bp, and containing 131 genes, including 86 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. Remarkably, the infA gene was identified as a pseudogene in 17 species. Significant variability was observed in simple sequence repeats (SSRs) as well as in the boundary regions between the two single-copy regions and the inverted repeat region (SC/IR) across the plastomes. Additionally, four genes (accD, atpF, rpl32, and rps8) were found to be under positive selection. The monophyletic status of Lithocarpus was strongly supported by plastome-based phylogeny; however, the phylogenetic tree topology showed a significant difference from that obtained by the nuclear genome-based phylogeny.
The plastome of Fagaceae is generally conserved. Nevertheless, genes related to metabolism, photosynthesis, and energy were under strong positive selection in Lithocarpus, likely driven by environmental pressures and local adaptation. The plastome-based phylogeny confirmed the monophyletic status of Lithocarpus and revealed a phylogeographic pattern indicating limited seed-mediated gene flow in the ancestral lineage. The prevalence of cytonuclear discordance in Lithocarpus and other Fagaceae genera suggests that ancient introgression, incomplete lineage sorting, and asymmetrical seed- and pollen-mediated geneflow might contribute to this discordance. Future studies are essential to test these hypotheses and further elucidate the divergence patterns of this unique Asian evergreen lineage. |
---|---|
ISSN: | 1471-2229 1471-2229 |
DOI: | 10.1186/s12870-024-05874-z |