An analysis on investment performance of machine learning: an empirical examination on Taiwan stock market

This study aims to explore the prediction of Taiwan stock price movement and conduct an analysis of its investment performance. Based on Taiwan Stock Market index, the study compares four machine learning models: ANN, SVM, Random Forest and Naïve-Bayes. With a performance evaluation of Taiwan Stock...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of economics and financial issues 2019-07, Vol.9 (4), p.1-10
1. Verfasser: Chen, Chia-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to explore the prediction of Taiwan stock price movement and conduct an analysis of its investment performance. Based on Taiwan Stock Market index, the study compares four machine learning models: ANN, SVM, Random Forest and Naïve-Bayes. With a performance evaluation of Taiwan Stock Market index historical data spanning from 2014 to 2018, we find: (1) By overall performance measures, machine learning models outperform benchmark market index. (2) By risk-adjusted measures, the empirical results suggest that ANN generates the best performance, followed by SVM and Random Forest, and Naïve-Bayes coming in last.
ISSN:2146-4138
2146-4138
DOI:10.32479/ijefi.8129