Testing hadronic and photo-hadronic interactions as responsible for UHECR and neutrino fluxes from Starburst Galaxies

We test the hypothesis that starburst galaxies are the sources of ultra-high energy cosmic rays and high-energy neutrinos. The computation of interactions of ultra-high energy cosmic rays in the starburst environment as well as in the propagation to the Earth is made using a modified version of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Condorelli, Antonio, Boncioli, Denise, Peretti, Enrico, Petrera, Sergio
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We test the hypothesis that starburst galaxies are the sources of ultra-high energy cosmic rays and high-energy neutrinos. The computation of interactions of ultra-high energy cosmic rays in the starburst environment as well as in the propagation to the Earth is made using a modified version of the Monte Carlo code SimProp, where hadronic processes are implemented for the first time. Taking into account a star-formationrate distribution of sources, the fluxes of ultra-high energy cosmic rays and high-energy neutrinos are computed and compared with observations, and the explored parameter space for the source characteristics is discussed. We find that, depending on the density of the gas in the source environment, spallation reactions could hide the outcome in neutrinos from photo-hadronic interactions in the source environment and in extra-galactic space. We confirm that source-propagation models constitute a promising way to improve the discrimination power of models considering only ultra-high energy cosmic rays, on the way to unveiling the source class responsible for ultra-high energy cosmic rays and high-energy neutrinos.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/202328304008