On classical solutions of Rayleigh–Taylor instability in inhomogeneous viscoelastic fluids
We study the nonlinear Rayleigh–Taylor (RT) instability of an inhomogeneous incompressible viscoelastic fluid in a bounded domain. It is well known that there exist strong solutions of RT instability in H 2 -norm in inhomogeneous incompressible viscoelastic fluids, when the elasticity coefficient κ...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2019-09, Vol.2019 (1), p.1-32, Article 149 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the nonlinear Rayleigh–Taylor (RT) instability of an inhomogeneous incompressible viscoelastic fluid in a bounded domain. It is well known that there exist strong solutions of RT instability in
H
2
-norm in inhomogeneous incompressible viscoelastic fluids, when the elasticity coefficient
κ
is less than some threshold
κ
C
. In this paper, we prove the existence of classical solutions of RT instability in
L
1
-norm in Lagrangian coordinates based on a bootstrap instability method with finer analysis, if
κ
<
κ
C
. Moreover, we also get classical solutions of RT instability in
L
1
-norm in Eulerian coordinates by further applying an inverse transformation of Lagrangian coordinates. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-019-1263-4 |