Assessment of pulmonary 18F-FDG-PET uptake and cytokine profiles in non-small cell lung cancer patients treated with radiotherapy and erlotinib
[Display omitted] To investigate effects of radiotherapy (RT) and erlotinib on pulmonary glucose uptake using 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography (PET) during and after treatment of non-small cell lung cancer (NSCLC) and to identify associations between serum cytok...
Gespeichert in:
Veröffentlicht in: | Clinical and translational radiation oncology 2017-06, Vol.4 (C), p.57-63 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
To investigate effects of radiotherapy (RT) and erlotinib on pulmonary glucose uptake using 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography (PET) during and after treatment of non-small cell lung cancer (NSCLC) and to identify associations between serum cytokine levels and lung glucose uptake.
Twenty-seven patients with advanced NSCLC, receiving RT alone or concomitant RT and erlotinib therapy, were examined by 18F-FDG PET before, during, and after treatment. A total of 57 18F-FDG PET scans were analyzed. Pulmonary 18F-FDG uptake and radiotherapy dose mapping were used to acquire dose-response curves for each patient, where subsequent linear regression gave a glucose uptake level in the un-irradiated parts of the lungs (SUV0) and a response slope (ΔSUV). Serum cytokine levels at corresponding time points were assessed using a multiplex bioassay. Correlations between the most robust cytokines and lung 18F-FDG dose response parameters were further investigated.
From the dose response analysis, SUV0 at post-therapy was significantly higher (P |
---|---|
ISSN: | 2405-6308 2405-6308 |
DOI: | 10.1016/j.ctro.2017.04.002 |