CRISPR in Your Kitchen: an At-Home CRISPR Kit to Edit Genes in Saccharomyces cerevisiae Used during a Remote Lab Course
The use of CRISPR-based experiments in an undergraduate course is appealing because of the ease of editing, and the relevance of CRISPR to current research. Before the COVID-19 pandemic, we developed an in-person lab for a high-enrollment course that allowed students to design and conduct CRISPR edi...
Gespeichert in:
Veröffentlicht in: | Journal of microbiology & biology education 2022-04, Vol.23 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of CRISPR-based experiments in an undergraduate course is appealing because of the ease of editing, and the relevance of CRISPR to current research. Before the COVID-19 pandemic, we developed an in-person lab for a high-enrollment course that allowed students to design and conduct CRISPR editing experiments in budding yeast, Saccharomyces cerevisiae. Post pandemic, the lab course moved online, and we lost the hands-on component. We subsequently developed an at-home kit that contained all the necessary materials for students to grow and transform S. cerevisiae with the DNA molecules necessary for CRISPR-Cas9 induced editing. Our at-home kits cost approximately $70 each to produce and were shipped to over 600 students during the 2020 to 2021 academic year. By adding the at-home experimental work to our remote, online lab course, students were able to generate loss-of-function mutants in ADE2 (causing a red color phenotype). Students were able to send edited yeast samples back to campus for sequencing, allowing for characterization of the different mutations that can occur due to CRISPR-Cas9 induced editing. Here, we described the protocol to produce and use the kits and summarized the student experience of using the at-home kit in a large enrollment, remote lab course. These kits provided opportunities to engage students in hands-on experimentation during a remote course and could also be used to reach learners in other domains, such as high schools and outreach programs. |
---|---|
ISSN: | 1935-7877 1935-7885 |
DOI: | 10.1128/jmbe.00321-21 |