An Improved Ant Colony Optimization Based on an Adaptive Heuristic Factor for the Traveling Salesman Problem

The traveling salesman problem (TSP) is a typical combinatorial optimization problem, which is often applied to sensor placement, path planning, etc. In this paper, an improved ACO algorithm based on an adaptive heuristic factor (AHACO) is proposed to deal with the TSP. In the AHACO, three main impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced transportation 2021, Vol.2021, p.1-16
Hauptverfasser: Du, Pengzhen, Liu, Ning, Zhang, Haofeng, Lu, Jianfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The traveling salesman problem (TSP) is a typical combinatorial optimization problem, which is often applied to sensor placement, path planning, etc. In this paper, an improved ACO algorithm based on an adaptive heuristic factor (AHACO) is proposed to deal with the TSP. In the AHACO, three main improvements are proposed to improve the performance of the algorithm. First, the k-means algorithm is introduced to classify cities. The AHACO provides different movement strategies for different city classes, which improves the diversity of the population and improves the search ability of the algorithm. A modified 2-opt local optimizer is proposed to further tune the solution. Finally, a mechanism to jump out of the local optimum is introduced to avoid the stagnation of the algorithm. The proposed algorithm is tested in numerical experiments using 39 TSP instances, and results shows that the solution quality of the AHACO is 83.33% higher than that of the comparison algorithms on average. For large-scale TSP instances, the algorithm is also far better than the comparison algorithms.
ISSN:0197-6729
2042-3195
DOI:10.1155/2021/6642009