The Abundant and Unique Transcripts and Alternative Splicing of the Artificially Autododecaploid London Plane (Platanus × acerifolia)
Transcription and alternative splicing (AS) are now appreciated in plants, but few studies have examined the effects of changing ploidy on transcription and AS. In this study, we showed that artificially autododecaploid plants of London plane (Platanus × acerifolia (Aiton) Willd) had few flowers rel...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2023-10, Vol.24 (19), p.14486 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transcription and alternative splicing (AS) are now appreciated in plants, but few studies have examined the effects of changing ploidy on transcription and AS. In this study, we showed that artificially autododecaploid plants of London plane (Platanus × acerifolia (Aiton) Willd) had few flowers relative to their hexaploid progenitors. Transcriptome analysis based on full-length Oxford Nanopore Technologies (ONTs) and next-generation sequencing (NGS) revealed that the increased ploidy level in P. × acerifolia led to more transcribed isoforms, accompanied by an increase in the number of isoforms per gene. The functional enrichment of genes indicated that novel genes transcribed specifically in the dodecaploids may have been highly correlated with the ability to maintain genome stability. The dodecaploids showed a higher number of genes with upregulated differentially expressed genes (DEGs) compared with the hexaploid counterpart. The genome duplication of P. × acerifolia resulted mainly in the DEGs involved in basic biological pathways. It was noted that there was a greater abundance of alternative splicing (AS) events and AS genes in the dodecaploids compared with the hexaploids in P. × acerifolia. In addition, a significant difference between the structure and expression of AS events between the hexaploids and dodecaploids of Platanus was found. Of note, some DEGs and differentially spliced genes (DSGs) related to floral transition and flower development were consistent with the few flower traits in the dodecaploids of P. × acerifolia. Collectively, our findings explored the difference in transcription and AS regulation between the hexaploids and dodecaploids of P. × acerifolia and gained new insight into the molecular mechanisms underlying the few-flower phenotype of P. × acerifolia. These results contribute to uncovering the regulatory role of transcription and AS in polyploids and breeding few-flower germplasms. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms241914486 |