Investigation on Mechanical Properties and Oxidation Behavior of 1.2 and 1.7 GPa Grades Coating-Free Press-Hardened Steels

Al-Si-coated boron-alloyed steels are the most widely used press-hardened steels (PHSs), which offers good oxidation resistance during hot forming due to the presence of the near eutectic Al-Si coating. In this study, a recently developed novel un-coated oxidation resistant PHS, called coating-free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2023-03, Vol.13 (3), p.489
Hauptverfasser: Chai, Zhisong, Lu, Qi, Tedesco, Sarah, Shi, Mingfeng, Coryell, Jason, Reini, Luke, Lai, Qingquan, Wang, Jianfeng, Wang, Lingyu, Xu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Al-Si-coated boron-alloyed steels are the most widely used press-hardened steels (PHSs), which offers good oxidation resistance during hot forming due to the presence of the near eutectic Al-Si coating. In this study, a recently developed novel un-coated oxidation resistant PHS, called coating-free PHS (CF-PHS), is introduced as an alternative to the commercial Al-Si coated PHSs. With tailored additions of Cr, Mn, and Si, the new steel demonstrates superior oxidation resistance with a sub-micron oxide layer after the conventional hot stamping process. Hence, it does not require shot blasting before the subsequent welding and E-coating process. Two CF-PHS grades have been developed with ultimate tensile strengths of approximately 1.2 and 1.7 GPa, respectively. Both grades have a total elongation of 8–9%, exceeding the corresponding Al-Si-coated PHS grades (1.0 GPa/6–7%, 1.5 GPa/6–7%). Furthermore, the bendability of CF-PHS was similar to the corresponding Al-Si PHS grades. On the other hand, performance evaluations relevant to automotive applications, such as weldability, the E-coat adhesion, and tailor-welded hot stamp door ring, were also conducted on the CF-PHS steel to satisfy the requirements of manufacturing.
ISSN:2075-4701
2075-4701
DOI:10.3390/met13030489