Computing the speed of convergence of ergodic averages and pseudorandom points in computable dynamical systems
A pseudorandom point in an ergodic dynamical system over a computable metric space is a point which is computable but its dynamics has the same statistical behavior as a typical point of the system. It was proved in [J. Avigad, P. Gerhardy, H. Towsner. Local stability of ergodic averages] that in a...
Gespeichert in:
Veröffentlicht in: | Electronic proceedings in theoretical computer science 2010-01, Vol.24 (Proc. CCA 2010), p.7-18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A pseudorandom point in an ergodic dynamical system over a computable metric space is a point which is computable but its dynamics has the same statistical behavior as a typical point of the system. It was proved in [J. Avigad, P. Gerhardy, H. Towsner. Local stability of ergodic averages] that in a system whose dynamics is computable the ergodic averages of computable observables converge effectively. We give an alternative, simpler proof of this result. This implies that if also the invariant measure is computable then the pseudorandom points are a set which is dense (hence nonempty) on the support of the invariant measure. |
---|---|
ISSN: | 2075-2180 2075-2180 |
DOI: | 10.4204/EPTCS.24.6 |