Self-Supervised Spatio-Temporal Graph Learning for Point-of-Interest Recommendation

As one of the most crucial topics in the recommendation system field, point-of-interest (POI) recommendation aims to recommending potential interesting POIs to users. Recently, graph neural networks have been successfully used to model interaction and spatio-temporal information in POI recommendatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-08, Vol.13 (15), p.8885
Hauptverfasser: Liu, Jiawei, Gao, Haihan, Shi, Chuan, Cheng, Hongtao, Xie, Qianlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As one of the most crucial topics in the recommendation system field, point-of-interest (POI) recommendation aims to recommending potential interesting POIs to users. Recently, graph neural networks have been successfully used to model interaction and spatio-temporal information in POI recommendations, but the data sparsity of POI recommendations affects the training of GNNs. Although some existing GNN-based POI recommendation approaches try to use social relationships or user attributes to alleviate the data sparsity problem, such auxiliary information is not always available for privacy reasons. Self-supervised learning provides a new idea to alleviate the data sparsity problem, but most existing self-supervised recommendation methods are designed for bi-partite graphs or social graphs, and cannot be directly used in the spatio-temporal graph of POI recommendations. In this paper, we propose a new method named SSTGL to combine self-supervised learning and GNN-based POI recommendation for the first time. SSTGL is empowered with spatio-temporal-aware strategies in the data augmentation and pre-text task stages, respectively, so that it can provide high-quality supervision information by incorporating spatio-temporal prior knowledge. By combining self-supervised learning objective with recommendation objectives, SSTGL can improve the performance of GNN-based POI recommendations. Extensive experiments on three POI recommendation datasets demonstrate the effectiveness of SSTGL, which performed better than existing mainstream methods.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13158885