Transforming a Computational Model from a Research Tool to a Software Product: A Case Study from Arc Welding Research
Arc welding is a thermal plasma process widely used to join metals. An arc welding model that couples fluid dynamic and electromagnetic equations was initially developed as a research tool. Subsequently, it was applied to improve and optimise industrial implementations of arc welding. The model incl...
Gespeichert in:
Veröffentlicht in: | Software 2023-05, Vol.2 (2), p.258-275 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Arc welding is a thermal plasma process widely used to join metals. An arc welding model that couples fluid dynamic and electromagnetic equations was initially developed as a research tool. Subsequently, it was applied to improve and optimise industrial implementations of arc welding. The model includes the arc plasma, the electrode, and the workpiece in the computational domain. It incorporates several features to ensure numerical accuracy and reduce computation time and memory requirements. The arc welding code has been refactored into commercial-grade Windows software, ArcWeld, to address the needs of industrial customers. The methods used to develop ArcWeld and its extension to new arc welding regimes, which used the Workspace workflow platform, are presented. The transformation of the model to an integrated software application means that non-experts can now run the code after only elementary training. The user can easily visualise the results, improving the ability to analyse and generate insights into the arc welding process being modelled. These changes mean that scientific progress is accelerated, and that the software can be used in industry and assist welders’ training. The methods used are transferrable to many other research codes. |
---|---|
ISSN: | 2674-113X 2674-113X |
DOI: | 10.3390/software2020012 |