Total Roman 2-Reinforcement of Graphs
A total Roman 2-dominating function (TR2DF) on a graph Γ=V,E is a function l:V⟶0,1,2, satisfying the conditions that (i) for every vertex y∈V with ly=0, either y is adjacent to a vertex labeled 2 under l, or y is adjacent to at least two vertices labeled 1; (ii) the subgraph induced by the set of ve...
Gespeichert in:
Veröffentlicht in: | Journal of mathematics (Hidawi) 2021, Vol.2021, p.1-7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A total Roman 2-dominating function (TR2DF) on a graph Γ=V,E is a function l:V⟶0,1,2, satisfying the conditions that (i) for every vertex y∈V with ly=0, either y is adjacent to a vertex labeled 2 under l, or y is adjacent to at least two vertices labeled 1; (ii) the subgraph induced by the set of vertices with positive weight has no isolated vertex. The weight of a TR2DF l is the value ∑y∈Vly. The total Roman 2-domination number (TR2D-number) of a graph Γ is the minimum weight of a TR2DF on Γ. The total Roman 2-reinforcement number (TR2R-number) of a graph is the minimum number of edges that have to be added to the graph in order to decrease the TR2D-number. In this manuscript, we study the properties of TR2R-number and we present some sharp upper bounds. In particular, we determine the exact value of TR2R-numbers of some classes of graphs. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2021/5515250 |