Index boundedness and uniform connectedness of space of the G-permutation degree
In this paper the properties of space of the G-permutation degree, like: weight, uniform connectedness and index boundedness are studied. It is proved that:(1) If (X, U) is a uniform space, then the mapping π s n, G : (X n , U n ) → (SP n GX, SP n GU) is uniformly continuous and uniformly open, more...
Gespeichert in:
Veröffentlicht in: | Applied general topology 2021-10, Vol.22 (2), p.447-459 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper the properties of space of the G-permutation degree, like: weight, uniform connectedness and index boundedness are studied. It is proved that:(1) If (X, U) is a uniform space, then the mapping π s n, G : (X n , U n ) → (SP n GX, SP n GU) is uniformly continuous and uniformly open, moreover w (U) = w (SP n GU);(2) If the mapping f : (X, U) → (Y, V) is a uniformly continuous (open), then the mapping SP n Gf : (SP n GX, SP n GU) → (SP n GY, SP n GV) is also uniformly continuous (open);(3) If the uniform space (X, U) is uniformly connected, then the uniform space (SP n GX, SP n GU) is also uniformly connected. |
---|---|
ISSN: | 1576-9402 1989-4147 |
DOI: | 10.4995/agt.2021.15566 |