Xenotransplantation of cryopreserved human clumps of mesenchymal stem cells/extracellular matrix complexes pretreated with IFN-γ induces rat calvarial bone regeneration
Three-dimensional (3D) clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes, composed with cells and self-produced intact ECM, can be grafted into defect areas without artificial scaffold to induce successful bone regeneration. Moreover, C-MSCs pretreated with IFN-γ (C-MSCsγ)...
Gespeichert in:
Veröffentlicht in: | Regenerative therapy 2022-06, Vol.20, p.117-125 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional (3D) clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes, composed with cells and self-produced intact ECM, can be grafted into defect areas without artificial scaffold to induce successful bone regeneration. Moreover, C-MSCs pretreated with IFN-γ (C-MSCsγ) increased the immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO) expression and thereby inhibited T cell activity. Xenotransplantation of human C-MSCsγ suppressed host T cell immune rejection and induced bone regeneration in mice. Besides, we have also reported that C-MSCs retain the 3D structure and bone regenerative property even after cryopreservation. To develop the “off-the-shelf” cell preparation for bone regenerative therapy that is promptly provided when needed, we investigated whether C-MSCsγ can retain the immunosuppressive and osteogenic properties after cryopreservation.
Confluent human MSCs that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The round cell clumps were incubated with a growth medium for 3 days, and then C-MSCs were obtained. To generate C-MSCsγ, after 2 days’ culture, C-MSCs were stimulated with 50 ng/ml of IFN-γ. Both C-MSCs and C-MSCsγ were cryopreserved for 2 days and then thawed to obtain Cryo-C-MSCs and Cryo-C-MSCsγ, respectively. The biological properties of those cell clumps were assessed in vitro. In addition, to test whether human Cryo-C-MSCsγ attenuates immune rejection to induce bone regeneration, a xenograft study using a rat calvarial defect was performed.
Both IFN-γ pretreatment and cryopreservation process did not affect the 3D structure and cell viability in all human cell clumps. Interestingly, Cryo-C-MSCsγ showed significantly increased IDO mRNA expression equivalent to C-MSCsγ. More importantly, xenotransplantation of human C-MSCsγ and Cryo-C-MSCsγ induced rat calvarial bone regeneration by suppressing rat T cells infiltration and the grafted human cells reduction in the grafted area. Finally, there were no human donor cells in the newly formed bone, implying that the bone reconstruction by C-MSCsγ and Cryo-C-MSCsγ can be due to indirect host osteogenesis.
These findings implied that Cryo-C-MSCsγ can be a promising bone regenerative allograft therapy that can be certainly and promptly supplied on demand. |
---|---|
ISSN: | 2352-3204 2352-3204 |
DOI: | 10.1016/j.reth.2022.04.003 |