A Review of Research Progress on Machining Carbon Fiber-Reinforced Composites with Lasers
Carbon fiber-reinforced composites are widely used in automobile, aerospace and military lightweight manufacturing due to their excellent mechanical properties such as light weight, excellent fracture resistance, corrosion resistance and wear resistance, etc. However, because of their high hardness,...
Gespeichert in:
Veröffentlicht in: | Micromachines (Basel) 2022-12, Vol.14 (1), p.24 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon fiber-reinforced composites are widely used in automobile, aerospace and military lightweight manufacturing due to their excellent mechanical properties such as light weight, excellent fracture resistance, corrosion resistance and wear resistance, etc. However, because of their high hardness, anisotropy and low interlayer strength characteristics, there are many problems with machine carbon fiber-reinforced composites with traditional methods. As a non-contact processing technology, laser machining technology has lots of advantages in carbon fiber-reinforced composites processing. However, there are also some defects produced in laser machining process such the heat affected zone, delamination and fiber extraction due to the great difference of physical properties between the carbon fibers and the resin matrix. To improve the quality of carbon fiber-reinforced composites laser machining, lots of works have been carried out. In this paper, the research progress of carbon fiber-reinforced composites laser machining parameters optimization and numerical simulation was summarized, the characteristics of laser cutting carbon fiber-reinforced composites and cutting quality influence factors were discussed, and the developing trend of the carbon fiber-reinforced composites laser cutting was prospected. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi14010024 |