Identifying Foreign Tourists’ Nationality from Mobility Traces via LSTM Neural Network and Location Embeddings

The interest in human mobility analysis has increased with the rapid growth of positioning technology and motion tracking, leading to a variety of studies based on trajectory recordings. Mapping the routes that people commonly perform was revealed to be very useful for location-based service applica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-07, Vol.9 (14), p.2861
Hauptverfasser: Crivellari, Alessandro, Beinat, Euro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interest in human mobility analysis has increased with the rapid growth of positioning technology and motion tracking, leading to a variety of studies based on trajectory recordings. Mapping the routes that people commonly perform was revealed to be very useful for location-based service applications, where individual mobility behaviors can potentially disclose meaningful information about each customer and be fruitfully used for personalized recommendation systems. This paper tackles a novel trajectory labeling problem related to the context of user profiling in “smart” tourism, inferring the nationality of individual users on the basis of their motion trajectories. In particular, we use large-scale motion traces of short-term foreign visitors as a way of detecting the nationality of individuals. This task is not trivial, relying on the hypothesis that foreign tourists of different nationalities may not only visit different locations, but also move in a different way between the same locations. The problem is defined as a multinomial classification with a few tens of classes (nationalities) and sparse location-based trajectory data. We hereby propose a machine learning-based methodology, consisting of a long short-term memory (LSTM) neural network trained on vector representations of locations, in order to capture the underlying semantics of user mobility patterns. Experiments conducted on a real-world big dataset demonstrate that our method achieves considerably higher performances than baseline and traditional approaches.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9142861