Free Intermetallic Cladding Interface between Aluminum and Steel through Friction Stir Processing
In this paper, the cladding of pure aluminum and a low-carbon steel alloy was performed through friction stir processing with minimal intermetallic compound formation. A 3 mm thick aluminum plate was clamped on top of a steel plate. A thick, pure copper plate was used as a backing plate. The tool pi...
Gespeichert in:
Veröffentlicht in: | Crystals (Basel) 2022-10, Vol.12 (10), p.1413 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the cladding of pure aluminum and a low-carbon steel alloy was performed through friction stir processing with minimal intermetallic compound formation. A 3 mm thick aluminum plate was clamped on top of a steel plate. A thick, pure copper plate was used as a backing plate. The tool pin length was adjusted to be the same as the upper plate’s thickness (3 mm) and longer than 3.2 mm. The effect of the tool pin length and the rotation speed (500–1500 rpm) on the cladding’s quality, microstructure, and the mechanical properties of the steel/aluminum interface were investigated using optical and scanning electron microscopy, a hardness test, and a peel test. The results showed that the bonding of pure aluminum and a low-carbon steel alloy can be successfully performed at a more than 500 rpm rotation speed. At a tool pin length of 3 mm and a rotation speed of 1000 rpm, sound and free-intermetallic compound–cladding interfaces were formed, while some Fel2Al5 intermetallics were formed when the rotation speed was increased to 1500 rpm. The pure copper backing plate has an essential role in eliminating or reducing the formation of intermetallic compounds in the cladding interface. When the tool pin length was increased to 3.2 mm, more steel fragments were found on the aluminum side. Moreover, with a higher rotation speed and longer tool pin length, more Fe2Al5 intermetallics were formed at the interface. Increasing the rotation speed and the pin tool length contributed to the enhancement of interface bonding. Meanwhile, the maximum tensile shear load was obtained at a rotation speed of 1500 rpm and a tool pin length of 3.2 mm. In addition, the hardness values of the interface were higher than the aluminum base metal for all the investigated samples. Decreasing the rotation speed and increasing the tool pin length can significantly increase hardness measurements. The average hardness increases from 42 HV of the pure aluminum to 143 HV at a rotation speed and a tool pin length of 1500 rpm and 3.2, respectively. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst12101413 |