Approximately Optimal Control of Nonlinear Dynamic Stochastic Problems with Learning: The OPTCON Algorithm

OPTCON is an algorithm for the optimal control of nonlinear stochastic systems which is particularly applicable to economic models. It delivers approximate numerical solutions to optimum control (dynamic optimization) problems with a quadratic objective function for nonlinear economic models with ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms 2021-06, Vol.14 (6), p.181
Hauptverfasser: Blueschke, Dmitri, Blueschke-Nikolaeva, Viktoria, Neck, Reinhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OPTCON is an algorithm for the optimal control of nonlinear stochastic systems which is particularly applicable to economic models. It delivers approximate numerical solutions to optimum control (dynamic optimization) problems with a quadratic objective function for nonlinear economic models with additive and multiplicative (parameter) uncertainties. The algorithm was first programmed in C# and then in MATLAB. It allows for deterministic and stochastic control, the latter with open loop (OPTCON1), passive learning (open-loop feedback, OPTCON2), and active learning (closed-loop, dual, or adaptive control, OPTCON3) information patterns. The mathematical aspects of the algorithm with open-loop feedback and closed-loop information patterns are presented in more detail in this paper.
ISSN:1999-4893
1999-4893
DOI:10.3390/a14060181