Weak upper semicontinuity of pullback attractors for nonautonomous reaction-diffusion equations

We consider nonautonomous reaction-diffusion equations with variable exponents and large diffusion and we prove continuity of the flow and weak upper semicontinuity of a family of pullback attractors when the exponents go to $2$ in $L^\infty(\Omega)$.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of qualitative theory of differential equations 2019-01, Vol.2019 (68), p.1-14
1. Verfasser: Simsen, Jacson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider nonautonomous reaction-diffusion equations with variable exponents and large diffusion and we prove continuity of the flow and weak upper semicontinuity of a family of pullback attractors when the exponents go to $2$ in $L^\infty(\Omega)$.
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2019.1.68