Weak upper semicontinuity of pullback attractors for nonautonomous reaction-diffusion equations
We consider nonautonomous reaction-diffusion equations with variable exponents and large diffusion and we prove continuity of the flow and weak upper semicontinuity of a family of pullback attractors when the exponents go to $2$ in $L^\infty(\Omega)$.
Gespeichert in:
Veröffentlicht in: | Electronic journal of qualitative theory of differential equations 2019-01, Vol.2019 (68), p.1-14 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider nonautonomous reaction-diffusion equations with variable exponents and large diffusion and we prove continuity of the flow and weak upper semicontinuity of a family of pullback attractors when the exponents go to $2$ in $L^\infty(\Omega)$. |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2019.1.68 |