Early prediction of in-hospital mortality utilizing multivariate predictive modelling of electronic medical records and socio-determinants of health of the first day of hospitalization

In France an average of 4% of hospitalized patients die during their hospital stay. To aid medical decision making and the attribution of resources, within a few days of admission the identification of patients at high risk of dying in hospital is essential. We used de-identified routine patient dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC medical informatics and decision making 2023-11, Vol.23 (1), p.259-259, Article 259
Hauptverfasser: Stoessel, Daniel, Fa, Rui, Artemova, Svetlana, von Schenck, Ursula, Nowparast Rostami, Hadiseh, Madiot, Pierre-Ephrem, Landelle, Caroline, Olive, Fréderic, Foote, Alison, Moreau-Gaudry, Alexandre, Bosson, Jean-Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In France an average of 4% of hospitalized patients die during their hospital stay. To aid medical decision making and the attribution of resources, within a few days of admission the identification of patients at high risk of dying in hospital is essential. We used de-identified routine patient data available in the first 2 days of hospitalization in a French University Hospital (between 2016 and 2018) to build models predicting in-hospital mortality (at ≥ 2 and ≤ 30 days after admission). We tested nine different machine learning algorithms with repeated 10-fold cross-validation. Models were trained with 283 variables including age, sex, socio-determinants of health, laboratory test results, procedures (Classification of Medical Acts), medications (Anatomical Therapeutic Chemical code), hospital department/unit and home address (urban, rural etc.). The models were evaluated using various performance metrics. The dataset contained 123,729 admissions, of which the outcome for 3542 was all-cause in-hospital mortality and 120,187 admissions (no death reported within 30 days) were controls. The support vector machine, logistic regression and Xgboost algorithms demonstrated high discrimination with a balanced accuracy of 0.81 (95%CI 0.80-0.82), 0.82 (95%CI 0.80-0.83) and 0.83 (95%CI 0.80-0.83) and AUC of 0.90 (95%CI 0.88-0.91), 0.90 (95%CI 0.89-0.91) and 0.90 (95%CI 0.89-0.91) respectively. The most predictive variables for in-hospital mortality in all three models were older age (greater risk), and admission with a confirmed appointment (reduced risk). We propose three highly discriminating machine-learning models that could improve clinical and organizational decision making for adult patients at hospital admission.
ISSN:1472-6947
1472-6947
DOI:10.1186/s12911-023-02356-4