Genus zero of projective symplectic groups

A transitive subgroup G ≤ SN is called a genus zero group if there exist non identity elements x1 , . . . , xr∈G satisfying G =, x1·...·xr=1 and ind x1+...+ind xr = 2N − 2. The Hurwitz space Hinr(G) is the space of genus zero coverings of the Riemann sphere P1 with r branch points and the monodromy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extracta mathematicae 2022, Vol.37 (2), p.195-210
Hauptverfasser: Mohammed Salih, H.M, Rezhna M. Hussein, Rezhna M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A transitive subgroup G ≤ SN is called a genus zero group if there exist non identity elements x1 , . . . , xr∈G satisfying G =, x1·...·xr=1 and ind x1+...+ind xr = 2N − 2. The Hurwitz space Hinr(G) is the space of genus zero coverings of the Riemann sphere P1 with r branch points and the monodromy group G.In this paper, we assume that G is a finite group with PSp(4, q) ≤ G ≤ Aut(PSp(4, q)) and G acts on the projective points of 3-dimensional projective geometry PG(3, q), q is a prime power. We show that G possesses no genus zero group if q > 5. Furthermore, we study the connectedness of the Hurwitz space Hinr(G) for a given group G and q ≤ 5.
ISSN:0213-8743
2605-5686
DOI:10.17398/2605-5686.37.2.195