Genus zero of projective symplectic groups
A transitive subgroup G ≤ SN is called a genus zero group if there exist non identity elements x1 , . . . , xr∈G satisfying G =, x1·...·xr=1 and ind x1+...+ind xr = 2N − 2. The Hurwitz space Hinr(G) is the space of genus zero coverings of the Riemann sphere P1 with r branch points and the monodromy...
Gespeichert in:
Veröffentlicht in: | Extracta mathematicae 2022, Vol.37 (2), p.195-210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A transitive subgroup G ≤ SN is called a genus zero group if there exist non identity elements x1 , . . . , xr∈G satisfying G =, x1·...·xr=1 and ind x1+...+ind xr = 2N − 2. The Hurwitz space Hinr(G) is the space of genus zero coverings of the Riemann sphere P1 with r branch points and the monodromy group G.In this paper, we assume that G is a finite group with PSp(4, q) ≤ G ≤ Aut(PSp(4, q)) and G acts on the projective points of 3-dimensional projective geometry PG(3, q), q is a prime power. We show that G possesses no genus zero group if q > 5. Furthermore, we study the connectedness of the Hurwitz space Hinr(G) for a given group G and q ≤ 5. |
---|---|
ISSN: | 0213-8743 2605-5686 |
DOI: | 10.17398/2605-5686.37.2.195 |