Shear Wave Velocity Estimation Based on Deep-Q Network

Geoacoustic inversion is important for seabed geotechnical applications. It can be formulated as a problem that seeks an optimal solution in a high-dimensional parameter space. The conventional inversion approach exploits optimization methods with a pre-defined search strategy whose hyperparameters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-09, Vol.12 (17), p.8919
Hauptverfasser: Zhu, Xiaoyu, Dong, Hefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geoacoustic inversion is important for seabed geotechnical applications. It can be formulated as a problem that seeks an optimal solution in a high-dimensional parameter space. The conventional inversion approach exploits optimization methods with a pre-defined search strategy whose hyperparameters need to be fine-tuned for a specific scenario. A framework based on the deep-Q network is proposed in this paper and the environment and agent configurations of the framework are specially defined for geoacoustic inversion. Unlike a conventional optimization method with a pre-defined search strategy, the proposed framework determines a flexible strategy by trial and error. The proposed framework is evaluated by two case studies for estimating the shear wave velocity profile. Its performance is compared with three global optimization methods commonly used in underwater geoacoustic inversion. The results demonstrate that the proposed framework performs the inversion more efficiently and accurately.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12178919