Ignition and combustion characteristics of micro/nano-Al and Al@Ni alloy powders at elevated pressures

Nanosizing and alloying of aluminum (Al) promisingly improve ignition and combustion performance of Al-based propellants. To aim this, lased-induced ignition and combustion characteristics of micro/nano-Al and aluminum@nickel (Al@Ni) alloy powders at elevated pressures (0.1–3.0 MPa) were investigate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Case studies in thermal engineering 2024-03, Vol.55, p.104169, Article 104169
Hauptverfasser: Feng, Chaojie, Jin, Xiao, Wang, Zhangtao, Huang, Xuefeng, Li, Shengji, Zhang, Jiankan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanosizing and alloying of aluminum (Al) promisingly improve ignition and combustion performance of Al-based propellants. To aim this, lased-induced ignition and combustion characteristics of micro/nano-Al and aluminum@nickel (Al@Ni) alloy powders at elevated pressures (0.1–3.0 MPa) were investigated and the pressure effect on these characteristics was correspondingly evaluated. Comparative results demonstrate that nanosizing and alloying significantly shorten ignition delay and total burn time at elevated pressures, with ignition delay reduction of 98.04% and 52.28% at 1.0 MPa for nano-Al and Al@Ni alloy compared to micro-Al counterpart. Nanosizing and alloying can decrease crucial pressure values (‘mid-pressure extinction domains’) influencing ignition delay, and promote the transfer from the surface to gaseous combustion mode. Maximum combustion temperatures of nano-Al are higher than micro-Al and Al@Ni alloy. During combustion, the combustion of Al@Ni alloy is further intensified due to the microexplosion, while possibly inhibited at higher pressures.
ISSN:2214-157X
2214-157X
DOI:10.1016/j.csite.2024.104169