Optimization-Based Wi-Fi Radio Map Construction for Indoor Positioning Using Only Smart Phones

Fingerprinting-based Wi-Fi indoor positioning has great potential for positioning in GPS-denied areas. However, establishing a fingerprinting map (also called a radio map) prior to positioning (site survey) is normally a labor-intensive task. This paper proposes a method for easy site survey without...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2018-09, Vol.18 (9), p.3095
Hauptverfasser: Tan, Jian, Fan, Xiangtao, Wang, Shenghua, Ren, Yingchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fingerprinting-based Wi-Fi indoor positioning has great potential for positioning in GPS-denied areas. However, establishing a fingerprinting map (also called a radio map) prior to positioning (site survey) is normally a labor-intensive task. This paper proposes a method for easy site survey without need for any extra hardware. The user can conduct the site survey adopting only a smart phone. The collected inertial-based readings are processed using the pedestrian dead-reckoning algorithms to generate a raw trajectory. Then a factor graph optimization method is proposed to re-estimate the trajectory by adding constraints originated from collected Wi-Fi fingerprints and landmark positions. The proposed method is verified through an experiment in a mall. The mean positioning error is 1.10 m and the maximum error is 2.25 m. This level of positioning accuracy is considered sufficient for radio map generation purposes. A classical baseline algorithm, the k-Nearest Neighbor (kNN) algorithm, is adopted to test the positioning performance of the radio map (RM), which also validates the quality of the constructed RM from the proposed method.
ISSN:1424-8220
1424-8220
DOI:10.3390/s18093095