Pure photosensitizer-driven nanoassembly with core-matched PEGylation for imaging-guided photodynamic therapy
Pure drug-assembled nanomedicines (PDANs) are currently under intensive investigation as promising nanoplatforms for cancer therapy. However, poor colloidal stability and less tumor-homing ability remain critical unresolved problems that impede their clinical translation. Herein, we report a core-ma...
Gespeichert in:
Veröffentlicht in: | Acta pharmaceutica Sinica. B 2021-11, Vol.11 (11), p.3636-3647 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pure drug-assembled nanomedicines (PDANs) are currently under intensive investigation as promising nanoplatforms for cancer therapy. However, poor colloidal stability and less tumor-homing ability remain critical unresolved problems that impede their clinical translation. Herein, we report a core-matched nanoassembly of pyropheophorbide a (PPa) for photodynamic therapy (PDT). Pure PPa molecules are found to self-assemble into nanoparticles (NPs), and an amphiphilic PEG polymer (PPa-PEG2K) is utilized to achieve core-matched PEGylating modification via the π‒π stacking effect and hydrophobic interaction between the PPa core and the PPa-PEG2K shell. Compared to PCL-PEG2K with similar molecular weight, PPa-PEG2K significantly increases the stability, prolongs the systemic circulation and improves the tumor-homing ability and ROS generation efficiency of PPa-nanoassembly. As a result, PPa/PPa-PEG2K NPs exert potent antitumor activity in a 4T1 breast tumor-bearing BALB/c mouse xenograft model. Together, such a core-matched nanoassembly of pure photosensitizer provides a new strategy for the development of imaging-guided theragnostic nanomedicines.
Pyropheophorbide a (PPa)-driven nanoassembly was formed by the core-matched modification of PPa-PEG2K. Afterwards, PPa/PPa-PEG2K NPs are endocytosed by tumor cells to exert effective photodynamic under laser irradiation. [Display omitted] |
---|---|
ISSN: | 2211-3835 2211-3843 |
DOI: | 10.1016/j.apsb.2021.04.005 |