The Complex Dynamics of Microplastic Migration through Different Aquatic Environments: Subsidies for a Better Understanding of Its Environmental Dispersion
Microplastic pollution in aquatic ecosystems has drawn attention not only because microplastics are likely to accumulate anywhere but also because they cause negative impacts both to aquatic biota and, indirectly, to public health, as a result of their presence. The understanding of the distribution...
Gespeichert in:
Veröffentlicht in: | Microplastics 2023-03, Vol.2 (1), p.62-77 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microplastic pollution in aquatic ecosystems has drawn attention not only because microplastics are likely to accumulate anywhere but also because they cause negative impacts both to aquatic biota and, indirectly, to public health, as a result of their presence. The understanding of the distribution and accumulation patterns of this “new contaminant” is fundamental for the calibration of environmental risk studies. However, research on its migration pattern and consequent distribution is still limited. The present study has focused on the peculiar physical characteristics of plastic microparticles and the response to environmental factors such as hydrodynamics and physical chemistry of water on the diffusion dynamics of these pollutant agents. Therefore, we examined information about the vertical abundance distribution, the composition, and the sizes of microplastics, along with the varied aquatic environments existing on Earth. This study provides valuable evidence for the accumulation trend of microplastics across the environment and the peculiar particle characteristics that dictate their distribution patterns. The present study concluded that detailed studies should be carried out in order to add information about the behavior of plastic microparticles in aquatic environments and thus subsidize the calibration of existing information, thus increasing its accuracy in understanding the diffusion patterns of these polluting agents. |
---|---|
ISSN: | 2673-8929 2673-8929 |
DOI: | 10.3390/microplastics2010005 |