Assessing the impact of deep‐learning assistance on the histopathological diagnosis of serous tubal intraepithelial carcinoma (STIC) in fallopian tubes

In recent years, it has become clear that artificial intelligence (AI) models can achieve high accuracy in specific pathology‐related tasks. An example is our deep‐learning model, designed to automatically detect serous tubal intraepithelial carcinoma (STIC), the precursor lesion to high‐grade serou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of pathology. Clinical research 2024-11, Vol.10 (6), p.e70006-n/a
Hauptverfasser: Bogaerts, Joep MA, Steenbeek, Miranda P, Bokhorst, John‐Melle, Bommel, Majke HD, Abete, Luca, Addante, Francesca, Brinkhuis, Mariel, Chrzan, Alicja, Cordier, Fleur, Devouassoux‐Shisheboran, Mojgan, Fernández‐Pérez, Juan, Fischer, Anna, Gilks, C Blake, Guerriero, Angela, Jaconi, Marta, Kleijn, Tony G, Kooreman, Loes, Martin, Spencer, Milla, Jakob, Narducci, Nadine, Ntala, Chara, Parkash, Vinita, Pauw, Christophe, Rabban, Joseph T, Rijstenberg, Lucia, Rottscholl, Robert, Staebler, Annette, Van de Vijver, Koen, Zannoni, Gian Franco, Zanten, Monica, Hullu, Joanne A, Simons, Michiel, Laak, Jeroen AWM, Bart, Joost, Bentz, Jessica L, Bosse, Tjalling, Bulten, Johan, Desouki, Mohamed Mokhtar, Lastra, Ricardo R, Numan, Tricia A, Schoolmeester, J Kenneth, Schwartz, Lauren E, Shih, Ie‐Ming, Soong, T Rinda, Turashvili, Gulisa, Vang, Russell, Volchek, Mila, Aliredjo, Riena P, Kusters‐Vandevelde, Heidi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, it has become clear that artificial intelligence (AI) models can achieve high accuracy in specific pathology‐related tasks. An example is our deep‐learning model, designed to automatically detect serous tubal intraepithelial carcinoma (STIC), the precursor lesion to high‐grade serous ovarian carcinoma, found in the fallopian tube. However, the standalone performance of a model is insufficient to determine its value in the diagnostic setting. To evaluate the impact of the use of this model on pathologists' performance, we set up a fully crossed multireader, multicase study, in which 26 participants, from 11 countries, reviewed 100 digitalized H&E‐stained slides of fallopian tubes (30 cases/70 controls) with and without AI assistance, with a washout period between the sessions. We evaluated the effect of the deep‐learning model on accuracy, slide review time and (subjectively perceived) diagnostic certainty, using mixed‐models analysis. With AI assistance, we found a significant increase in accuracy (p 
ISSN:2056-4538
2056-4538
DOI:10.1002/2056-4538.70006