A Cell-Penetrating Peptide Modified Cu2−xSe/Au Nanohybrid with Enhanced Efficacy for Combined Radio-Photothermal Therapy
Radiotherapy (RT) is one of the main clinical therapeutic strategies against cancer. Currently, multiple radiosensitizers aimed at enhancing X-ray absorption in cancer tissues have been developed, while limitations still exist for their further applications, such as poor cellular uptake, hypoxia-ind...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2023-01, Vol.28 (1), p.423 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radiotherapy (RT) is one of the main clinical therapeutic strategies against cancer. Currently, multiple radiosensitizers aimed at enhancing X-ray absorption in cancer tissues have been developed, while limitations still exist for their further applications, such as poor cellular uptake, hypoxia-induced radioresistance, and unavoidable damage to adjacent normal body tissues. In order to address these problems, a cell-penetrating TAT peptide (YGRKKRRQRRRC)-modified nanohybrid was constructed by doping high-Z element Au in hollow semiconductor Cu2−xSe nanoparticles for combined RT and photothermal therapy (PTT) against breast cancer. The obtained Cu2−xSe nanoparticles possessed excellent radiosensitizing properties based on their particular band structures, and high photothermal conversion efficiency beneficial for tumor ablation and promoting RT efficacy. Further doping high-Z element Au deposited more high-energy radiation for better radiosensitizing performance. Conjugation of TAT peptides outside the constructed Cu2−xSe/Au nanoparticles facilitated their cellular uptake, thus reducing overdosage-induced side effects. This prepared multifunctional nanohybrid showed powerful suppression effects towards breast cancer, both in vitro and in vivo via integrating enhanced cell penetration and uptake, and combined RT/PTT strategies. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28010423 |