Antiglioma Natural Products from the Marine-Associated Fungus Penicillium sp. ZZ1750

Marine-derived Penicillium fungi are one of the most important sources for the discovery of new bioactive natural products. This study characterized the isolation, structures, and antiglioma activities of twelve compounds, including three novel ones—penipyridinone B (1), 11S-(−)-penilloid A (2), and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2022-10, Vol.27 (20), p.7099
Hauptverfasser: Yong, Kuo, Kaleem, Sidra, Ma, Mingzhu, Lian, Xiaoyuan, Zhang, Zhizhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Marine-derived Penicillium fungi are one of the most important sources for the discovery of new bioactive natural products. This study characterized the isolation, structures, and antiglioma activities of twelve compounds, including three novel ones—penipyridinone B (1), 11S-(−)-penilloid A (2), and 11R,14E-(+)-penilloid A (3)—from the marine fungus Penicillium sp. ZZ1750. The structures of the novel compounds were determined via extensive nuclear magnetic resonance (NMR) spectroscopic analyses, high-resolution electrospray ionization mass spectroscopy (HRESIMS) data, Mosher’s method, optical rotation (OR) calculations, and electronic circular dichroism (ECD) calculations. Penipyridinone B represents the first example of its structural type and showed potent antiglioma activity, with IC50 values of 2.45 μM for U87MG cells and 11.40 μM for U251 cells. The known compounds of questiomycin A (9) and xanthocillin X (10) also showed antiproliferative activity against both U87MG and U251 cells, with IC50 values of 13.65 μM to 22.56 μM. The antiglioma activity of questiomycin A and xanthocillin X may be related to the promotion of reactive oxygen species (ROS) production, the reduction of mitochondrial membrane potential (MMP), and the enhancement of caspase-3 enzyme activity.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27207099