Nucleoside-Lipid-Based Nanoparticles for Phenazine Delivery: A New Therapeutic Strategy to Disrupt Hsp27-eIF4E Interaction in Castration Resistant Prostate Cancer
Heat shock protein 27 (Hsp27) has an established role in tumor progression and chemo-resistance of castration-resistant prostate cancer (CRPC). Hsp27 protects eukaryotic translation initiation factor 4E (eIF4E) from degradation, thereby maintaining survival during treatment. Phenazine derivative com...
Gespeichert in:
Veröffentlicht in: | Pharmaceutics 2021-04, Vol.13 (5), p.623 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heat shock protein 27 (Hsp27) has an established role in tumor progression and chemo-resistance of castration-resistant prostate cancer (CRPC). Hsp27 protects eukaryotic translation initiation factor 4E (eIF4E) from degradation, thereby maintaining survival during treatment. Phenazine derivative compound #14 was demonstrated to specifically disrupt Hsp27/eIF4E interaction and significantly delay castration-resistant tumor progression in prostate cancer xenografts. In the present work, various strategies of encapsulation of phenazine #14 with either DOTAU (N-[5'-(2',3'-dioleoyl)uridine]-N',N',N'-trimethylammonium tosylate) and DOU-PEG
(5'-PEG2000-2',3'-dioleoyluridine) nucleolipids (NLs) were developed in order to improve its solubilization, biological activity, and bioavailability. We observed that NLs-encapsulated phenazine #14-driven Hsp27-eIF4E interaction disruption increased cytotoxic effects on castration-resistant prostate cancer cell line and inhibited tumor growth in castration-resistant prostate cancer cell xenografted mice compared to phenazine #14 and NLs alone. Phenazine #14 NL encapsulation might represent an interesting nanostrategy for CRPC therapy. |
---|---|
ISSN: | 1999-4923 1999-4923 |
DOI: | 10.3390/pharmaceutics13050623 |