Phytic Acid-based NP Fire Retardant and its Effect on Combustion Property of Poplar Wood
To enhance the synergistic effect of phosphorus (P) and nitrogen (N) on flame retardant property, four different phytic acid-based NP flame retardants (FR-PAN) were manufactured using phytic acid and urea with various molar ratios, ranging from 1:3 to 1:12. The FR-PAN water solution was used to impr...
Gespeichert in:
Veröffentlicht in: | Bioresources 2023-12, Vol.19 (1), p.955-972 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To enhance the synergistic effect of phosphorus (P) and nitrogen (N) on flame retardant property, four different phytic acid-based NP flame retardants (FR-PAN) were manufactured using phytic acid and urea with various molar ratios, ranging from 1:3 to 1:12. The FR-PAN water solution was used to impregnate poplar wood under vacuum condition, and the thermal degradation performance of the FR-PAN treated wood were investigated. Compared to untreated wood, the PAN-6 (molar ratio is 1:6) group showed a reduction of 57.1% in total heat release and 80.0% in total smoke release. In the combustion, due to the introduction of P and N, FR-PAN generates O=P/C-O/C-P/C-N bonds, forming highly graphitized char residues, which effectively isolate the entry of oxygen and heat and play a good protective role in the condensed phase. Morphological and chemical analysis of the residual char layer revealed that the introduction of P and N elements formed a more stable hybrid structure, significantly improving the thermal stability of the char layer. Among them, the PAN-6 group exhibited the highest char layer stability, indicating optimal synergistic effects of nitrogen and phosphorus under these conditions. |
---|---|
ISSN: | 1930-2126 |