DEEP LEARNING BASED AERIAL IMAGERY CLASSIFICATION FOR TREE SPECIES IDENTIFICATION

Forest monitoring and tree species categorization has a vital importance in terms of biodiversity conservation, ecosystem health assessment, climate change mitigation, and sustainable resource management. Due to large-scale coverage of forest areas, remote sensing technology plays a crucial role in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bayrak, O. C., Erdem, F., Uzar, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forest monitoring and tree species categorization has a vital importance in terms of biodiversity conservation, ecosystem health assessment, climate change mitigation, and sustainable resource management. Due to large-scale coverage of forest areas, remote sensing technology plays a crucial role in the monitoring of forest areas by timely and regular data acquisition, multi-spectral and multi-temporal analysis, non-invasive data collection, accessibility and cost-effectiveness. High-resolution satellite and airborne remote sensing technologies have supplied image data with rich spatial, color, and texture information. Nowadays, deep learning models are commonly utilized in image classification, object recognition, and semantic segmentation applications in remote sensing and forest monitoring as well. We, in this study, selected a popular CNN and object detection algorithm YOLOv8 variants for tree species classification from aerial images of TreeSatAI benchmark. Our results showed that YOLOv8-l outperformed benchmark’s initial release results, and other YOLOv8 variants with 71,55% and 72,70% for weighted and micro averaging scores, respectively.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprs-archives-XLVIII-M-1-2023-471-2023