Effect of Weight Thresholding on the Robustness of Real-World Complex Networks to Central Node Attacks

In this study, we investigate the effect of weight thresholding (WT) on the robustness of real-world complex networks. Here, we assess the robustness of networks after WT against various node attack strategies. We perform WT by removing a fixed fraction of weak links. The size of the largest connect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-08, Vol.11 (16), p.3482
Hauptverfasser: John, Jisha Mariyam, Bellingeri, Michele, Lekha, Divya Sindhu, Cassi, Davide, Alfieri, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we investigate the effect of weight thresholding (WT) on the robustness of real-world complex networks. Here, we assess the robustness of networks after WT against various node attack strategies. We perform WT by removing a fixed fraction of weak links. The size of the largest connected component indicates the network’s robustness. We find that real-world networks subjected to WT hold a robust connectivity structure to node attack even for higher WT values. In addition, we analyze the change in the top 30% of central nodes with WT and find a positive correlation in the ranking of central nodes for weighted node centralities. Differently, binary node centralities show a lower correlation when networks are subjected to WT. This result indicates that weighted node centralities are more stable indicators of node importance in real-world networks subjected to link sparsification.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11163482