Numerical Investigation on the Transition Flow around NLF Airfoil

A natural laminar flow (NLF) airfoil is designed to reduce drag by expanding laminar flow areas. In-depth knowledge of transition performance is essential for its aerodynamic design. The k-ω-γ-Reθ framework, which consists of the SST k-ω turbulence model and γ-Reθ transition model, is employed to si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-02, Vol.16 (4), p.1826
Hauptverfasser: Wang, Hongbiao, Tan, Lei, Liu, Ming, Liu, Xiang, Zhu, Baoshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A natural laminar flow (NLF) airfoil is designed to reduce drag by expanding laminar flow areas. In-depth knowledge of transition performance is essential for its aerodynamic design. The k-ω-γ-Reθ framework, which consists of the SST k-ω turbulence model and γ-Reθ transition model, is employed to simulate transitional flows around an NLF wing RAE5243 airfoil. The transition performances of the RAE5243 airfoil under various values of turbulent intensity, temperature, angle of attack, and Mach number are simulated and compared. The results show that the rise of inflow turbulent intensity will promote an earlier transition on both the suction and pressure sides. The influence of wall temperature on transition is limited. The rise of angle of attack will lead to an earlier transition on the pressure side but a later transition on the suction side. With the rise of Mach number, the transition happens earlier under a zero and positive angle of attack but later under a negative angle of attack. In addition, the correlation of transition onset locations with respect to turbulent intensity, surface temperature, angle of attack, and Mach number is established based on numerical results.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16041826