Fine-Resolution Mapping of Soil Total Nitrogen across China Based on Weighted Model Averaging

Accurate estimates of the spatial distribution of total nitrogen (TN) in soil are fundamental for soil quality assessment, decision making in land management, and global nitrogen cycle modeling. In China, current maps are limited to individual regions or are of coarse resolution. In this study, we c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-01, Vol.12 (1), p.85
Hauptverfasser: Zhou, Yue, Xue, Jie, Chen, Songchao, Zhou, Yin, Liang, Zongzheng, Wang, Nan, Shi, Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate estimates of the spatial distribution of total nitrogen (TN) in soil are fundamental for soil quality assessment, decision making in land management, and global nitrogen cycle modeling. In China, current maps are limited to individual regions or are of coarse resolution. In this study, we compiled a new 90-m resolution map of soil TN in China by the weighted summation of random forest and extreme gradient boosting. After harmonizing soil data from 4022 soil profiles into a fixed soil depth (0–20 cm) by equal area spline, 18 environmental covariates were employed to characterize the spatial pattern of soil TN in topsoil across China. The accuracy assessments from independent validation data showed that the weighted model averaging gave the best predictions with an acceptable R2 (0.41). The prediction map showed that high-value areas of soil TN were mainly distributed in the eastern Tibetan Plateau, central Qilian Mountains and the north of the Greater Khingan Range. Climate factors had a considerable influence on the variation of the soil TN, and land-use types played a pivotal part in each climate zone. This high-resolution and high-quality soil TN data set in China can be very useful for future inventories of soil nitrogen, assessments of soil nutrient status, and management of arable land.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12010085