Recognition of Online Turkish Handwriting using Transfer Learning
We present a recognition system for online Turkish handwriting using transfer learning. Training deep networks requires large amounts of data. Since such a sufficiently large collection of Turkish handwriting samples is not available, So we adopt the transfer learning approach and train and optimize...
Gespeichert in:
Veröffentlicht in: | Gazi Üniversitesi Fen Bilimleri Dergisi 2023-09, Vol.11 (3), p.719-726 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a recognition system for online Turkish handwriting using transfer learning. Training deep networks requires large amounts of data. Since such a sufficiently large collection of Turkish handwriting samples is not available, So we adopt the transfer learning approach and train and optimize a CNN-BLSTM recognition system first using the standard IAM-On dataset of English handwriting. Then, we fine tune it with Turkish handwriting samples from a smaller dataset. Fine tuning increases the character recognition rate of the final system which is evaluated on 2,041 samples of isolated Turkish words from the initial value of 49% to 85%. The results show that transfer learning can be a solution to the data scarcity problem of online Turkish handwriting. |
---|---|
ISSN: | 2147-9526 2147-9526 |
DOI: | 10.29109/gujsc.1141508 |