Examining the Interaction of the Gut Microbiome with Host Metabolism and Cardiometabolic Health in Metabolic Syndrome
(1) Background: The microbiota-host cross-talk has been previously investigated, while its role in health is not yet clear. This study aimed to unravel the network of microbial-host interactions and correlate it with cardiometabolic risk factors. (2) Methods: A total of 47 adults with overweight/obe...
Gespeichert in:
Veröffentlicht in: | Nutrients 2021-11, Vol.13 (12), p.4318 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | (1) Background: The microbiota-host cross-talk has been previously investigated, while its role in health is not yet clear. This study aimed to unravel the network of microbial-host interactions and correlate it with cardiometabolic risk factors. (2) Methods: A total of 47 adults with overweight/obesity and metabolic syndrome from the METADIET study were included in this cross-sectional analysis. Microbiota composition (151 genera) was assessed by 16S rRNA sequencing, fecal (m = 203) and plasma (m = 373) metabolites were profiled. An unsupervised sparse generalized canonical correlation analysis was used to construct a network of microbiota-metabolite interactions. A multi-omics score was derived for each cluster of the network and associated with cardiometabolic risk factors. (3) Results: Five multi-omics clusters were identified. Thirty-one fecal metabolites formed these clusters and were correlated with plasma sphingomyelins, lysophospholipids and medium to long-chain acylcarnitines. Seven genera from Ruminococcaceae and a member from the Desulfovibrionaceae family were correlated with fecal and plasma metabolites. Positive correlations were found between the multi-omics scores from two clusters with cholesterol and triglycerides levels. (4) Conclusions: We identified a correlated network between specific microbial genera and fecal/plasma metabolites in an adult population with metabolic syndrome, suggesting an interplay between gut microbiota and host lipid metabolism on cardiometabolic health. |
---|---|
ISSN: | 2072-6643 2072-6643 |
DOI: | 10.3390/nu13124318 |