Designing photonic topological insulators with quantum-spin-Hall edge states using topology optimization
Designing photonic topological insulators (PTIs) is highly non-trivial because it requires inversion of band symmetries around the band gap, which was so far done using intuition combined with meticulous trial and error. Here we take a completely different approach: we consider the design of PTIs as...
Gespeichert in:
Veröffentlicht in: | Nanophotonics (Berlin, Germany) Germany), 2019-08, Vol.8 (8), p.1363-1369 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Designing photonic topological insulators (PTIs) is highly non-trivial because it requires inversion of band symmetries around the band gap, which was so far done using intuition combined with meticulous trial and error. Here we take a completely different approach: we consider the design of PTIs as an inverse design problem and use topology optimization to maximize the transmission through an edge mode past a sharp bend. Two design domains composed of two different but initially identical
-symmetric unit cells define the geometrical design problem. Remarkably, the optimization results in a PTI reminiscent of the shrink-and-grow approach to quantum-spin-Hall PTIs but with notable differences in the crystal structure as well as qualitatively different band structures and with significantly improved performance as gauged by the band-gap sizes, which are at least 50% larger than in previous designs. Furthermore, we find a directional β-factor exceeding 99% and very low losses for sharp bends. Our approach allows the introduction of fabrication limitations by design and opens an avenue towards designing PTIs with hitherto-unexplored symmetry constraints. |
---|---|
ISSN: | 2192-8606 2192-8614 |
DOI: | 10.1515/nanoph-2019-0057 |