The role of polymorphisms in genes that regulate neurohumoral systems in patients with atrial fibrillation
One of the important medical and social present-day problems is atrial fibrillation (AF) which prevalence in the adult population is 2 % for persons under 65 and 9 % for those over 65 years of age and it is a common cause of ischemic stroke. The embolic complications incidence is 2.1 % per year in p...
Gespeichert in:
Veröffentlicht in: | Zaporozhskiĭ medit͡s︡inskiĭ zhurnal 2019-06, Vol.21 (3), p.397-400 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the important medical and social present-day problems is atrial fibrillation (AF) which prevalence in the adult population is 2 % for persons under 65 and 9 % for those over 65 years of age and it is a common cause of ischemic stroke. The embolic complications incidence is 2.1 % per year in patients with paroxysmal AF, and 3.0 % per year in patients with persistent AF. The aim of the study is to analyze the modern literary sources related to the role of gene polymorphisms regulating some neurohumoral systems in group of patients with atrial fibrillation. A combination of certain genes polymorphisms can contribute to AF risk. Especially important are gene studies of the renin-angiotensin-aldosterone system (RAAS) role in the pathogenesis of AF which are currently being studied with a particular intensity. Recent data show that activation of RAAS plays an important role in the development and recurrence of AF. These studies are of great practical interest as the associative effect of angiotensin converting enzyme (ACE) inhibitors in the prevention of AF has been identified. AGT gene encodes a plasma protein known as angiotensinogen. This protein is expressed in the liver and is cleaved by the enzymatic renin action in response to lower blood pressure. The resulting product, angiotensin I, is then cleaved by ACE to the physiologically active enzyme angiotensin II. Defects in this gene may also be associated with non-hereditary AF. More than 16 spot mutations in the AGT gene were discovered, most of which resulted in amino acid substitutions. Conclusions. The analysis of the literature allows to conclude that, first, genetic polymorphisms may influence both the severity of pathological changes in the body and the efficacy of pharmacotherapy, and second, the study of RAAS gene polymorphisms may allow early detection of persons with increased risk of persistent AF recurrence and its prevention. |
---|---|
ISSN: | 2306-4145 2310-1210 |
DOI: | 10.14739/2310-1210.2019.3.169201 |